
PVD903-RKE2WORKBOOK

Pascal van Dam

Author(s): Pascal van Dam

©PASCALVANDAM.COM - 2023

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or me-

chanical, including photocopying, recording, or by an information storage and retrieval system,

without permission of ”PASCALVANDAM.COM”.

Although every precaution has been taken to verify the accuracy of the information contained herein,

”PASALVANDAM.COM” assume no responsibility for any errors or omissions. No Liability is assumed for damages that may

result from the use of information contained within.

Contents:

1 Install RKE2 for single CP K8S cluster 3

2 Install RKE2 on ARM64 architectures 11

3 Installing and configuring add-ons for RKE2 19

4 Backing up and restoring RKE2 clusters 35

5 RKE2 and FIPS/CIS installs 39

6 Upgrading RKE2 installations 43

i

ii

PVD903-RKE2 WORKBOOK, Release 231214

1

PVD903-RKE2 WORKBOOK, Release 231214

2

1
Install RKE2 for single CP K8S cluster

1.1 Introduction

In this lab we get you familiar with the RKE2 installation by setting up a RKE2 cluster consisting of a single master node and

1 or 2 worker nodes. Please remember that in RKE2 lingo, a master- or controlplane node is called a rke2-server and a

(worker-) node is called a rke2-agent.

1.1.1 Requirements

To be able to execute this lab, you need at least 2 Ubuntu 22.04 (LTS) systems. If you would like to add more rke2-agent

nodes you can always add more machines. The virtual machines must be provided with at least 4 GB Memory, 2 CPUs and

enough storage to store some containers (approximately 8 GB free space should be ok). This lab has been tested on both

x86_64 (AMD64) as wel as aarch64 (ARM64) systems. So they should also work on ARM64 architectures like RPi4, RPi5,

ARM64 ODROIDs, RockPi4, OrangePi4 (plus) etc. RKE2 does not support RISCV64 yet.

Furthermore, you need an Internet connection to be able to access the RKE2 distribution and download some containers from

quay.io and docker.io.

In this lab we assume that there is an unprivileged user, named ‘student01’ available on this system. This user should be able

to execute privileged commands using the sudo utility. Of course your usermay have a different name, important is the access

to sudo su - root privileges.

If not already done, you can create on all nodes this user as root:

▶ useradd -m -s /bin/bash student

▶ passwd student01

▶ echo ”student ALL=(ALL) NOPASSWD: ALL” | tee /etc/sudoers.d/89-student

Login again as the user student, and proceed this lab.

Bring your installation up-to-date, using:

▶ sudo apt update

▶ sudo apt upgrade -y

If systemd or the kernel is updated during this process, you need to reboot your system. If you are not sure: reboot it anyway.

▶ sudo systemctl reboot

Install the following software requirements:

3

PVD903-RKE2 WORKBOOK, Release 231214

▶ sudo apt -y install vim info wget curl elinks man-db manpages \

bash-completion psmisc jq ipvsadm yamllint conntrack \

apt-transport-https pinfo

Execute the update of your system and the installation of the software on each node.

1.1.2 Network Configuration

It is assumed that you have internet connection and for this lab that the local system firewall (UFW on Ubuntu) is disabled.

Please ensure it is disabled:

▶ sudo systemctl disable ufw --now

No further tuning of the network stack like with kubeadm is needed as the RKE2 installer binary will take care of it.

1.1.3 Swap

A requirement for Kubernetes is to have swap disabled, otherwise the Kubelet service will not start on the masters and nodes.

The idea of Kubernetes is to directly terminate overcommittingworkloads as not to jeopardize theworkload on the K8S cluster

that nicely abides to the rules. Remember the principle of Cattle vs. Pets in K8S.

▶ sudo systemctl disable --now swap.target

▶ sudo systemctl mask swap.target

▶ sudo sed -i '/swap/d' /etc/fstab

▶ sudo swapoff -a

Again, repeat this on every node.

1.2 Install RKE2

We will now use a 2 step process to install K8S using the RKE2 distribution on your systems:

1. Install RKE2 server on the system what will fulfill the role of master node for our K8S cluster.

2. Join the other servers that will play the role of (worker-)nodes by installing and configuring rke2-server on these.

In the examples shown here under we will have 3 systems:

Nr Hostname Role Config

1 k8sc903n01 RKE2 server 2cpu, 8GiB RAM

2 k8sc903n02 RKE2 agent #1 2cpu, 8GiB RAM

3 k8sc903n03 RKE2 agent #2 2cpu, 8GiB RAM

For all the steps, use your normal unprivileged user. When elevated rights are needed, the examples will clearly show the use

of the prefix sudo. Do NOT, I repeat, do NOT run these commands under the root user.

4 Chapter 1. Install RKE2 for single CP K8S cluster

PVD903-RKE2 WORKBOOK, Release 231214

1.2.1 Install RKE2 server node

Log on to the system that will take the role of your RKE2 server node. On this node execute the following steps:

• Step 1: Downloading the RKE2 binary and install it as a rke2-server binary:

▶ curl -sfL https://get.rke2.io | sudo sh -

Note:

Not specifying the INSTALL_RKE2_TYPE environment variable will always result in installing a ‘rke2-server’ node.

• Step 2: Enabling install and configuration of the RKE2 server node

▶ sudo systemctl enable rke2-server.service --now

Now we have to wait until the systemctl command returns. In the meantime we can take a look in the installation/config-

uration process of the rke2-server by consulting it’s log using journalctl. This can be done by backgrounding the systemctl

process (Press Ctrl-Z and type bg) or by accessing the system using a new terminal session.

The optional command to view the rke2-server installation progress is:

▶ sudo journalctl -u rke2-server -lf

Note:

This will run a tail on the rke2-server log. You can abort the log viewing/following by pressing Ctrl-C

Note:

In the logs you will find a lot of error conditions and timeouts. This is normal behaviour as the different components

of RKE2/K8S need to come up, find eachother and stabilize. It’s all about loosely coupled components, remember?

Once the systemctl command returns we can resume with arranging our access to the RKE2/K8S cluster.

• Step 3: Create the directory .kube in your homedir and copy RKE2’s kubeconfig file into it. We must not forget to set

the proper owner/group to it so we can access it.

▶ mkdir -p ~/.kube

▶ sudo cp /etc/rancher/rke2/rke2.yaml ~/.kube/config

▶ sudo chown ${USER}:${USER} ~/.kube/config

Note:

RKE2 has a different name for the kubeconfig file as kubeadm has. For RKE2 it’s called rke2.yaml and located in

/etc/rancher/rke2/rke2.yaml

Note:

If not already done so, youwill need to install thekubectl so thatwe can access ourRKE2K8S cluster. The commands

for installing it are:

1.2. Install RKE2 5

PVD903-RKE2 WORKBOOK, Release 231214

• Step 4: Install kubectl binary to access our cluster if not already done so:

▶ curl -LO ”https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/

→˓linux/amd64/kubectl”

▶ sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

Now we can check if our RKE2 cluster or actually still only the rke2-server node is coming up healthy:

• Step 5: Check with kubectl get nodes if the rke-server node is healthy.

▶ kubectl get nodes

NAME STATUS ROLES AGE VERSION

k8sc903n01 Ready control-plane,etcd,master 3m20s v1.28.2+rke2r1

• Step 6: If the rke2-server node is not ready yet we can watch or troubleshoot the install by taking a look at the K8S

engine room, the kube-system namespace:

▶ kubectl get pods

NAME READY STATUS RESTARTS ␣

→˓AGE

cloud-controller-manager-k8sc903n01 1/1 Running 0 ␣

→˓2m12s

etcd-k8sc903n01 1/1 Running 0 ␣

→˓2m12s

helm-install-rke2-canal-2tsct 0/1 Completed 0 ␣

→˓2m24s

helm-install-rke2-coredns-hthzg 0/1 Completed 0 ␣

→˓2m24s

kube-apiserver-k8sc903n01 1/1 Running 0 ␣

→˓2m14s

kube-controller-manager-k8sc903n01 1/1 Running 0 ␣

→˓2m24s

kube-proxy-k8sc903n01 1/1 Running 0 ␣

→˓2m14s

kube-scheduler-k8sc903n01 1/1 Running 0 ␣

→˓2m24s

rke2-canal-47kgn 2/2 Running 0 ␣

→˓2m12s

rke2-coredns-rke2-coredns-67f86d96c-8j5b8 1/1 Running 0 ␣

→˓2m24s

rke2-coredns-rke2-coredns-autoscaler-d97d9cd9f-b9dqf 1/1 Running 0 ␣

→˓2m24s

rke2-ingress-nginx-controller-4tj8g 1/1 Running 0 ␣

→˓2m12s

rke2-metrics-server-c6fb46b64-fvg29 1/1 Running 0 ␣

→˓2m24s

rke2-snapshot-controller-59cc9cd8f4-9h65p 1/1 Running 0 ␣

→˓2m24s

rke2-snapshot-validation-webhook-54c5989b65-l4dpt 1/1 Running 0 ␣

→˓2m24s

Note:

In the kube-systemnamespace you should be able to see all PODs either in Running or Completed state. Any other

state either states that your RKE2 cluster is not (yet) ready or has some serious issues. Do check with journalctl

-u rke2-server -lf for clues on the root-cause of the issue(s)

6 Chapter 1. Install RKE2 for single CP K8S cluster

PVD903-RKE2 WORKBOOK, Release 231214

Note:

By default on RKE2 server-nodes, the so called noschedule taint is not configured. This means that master nodes

do allow to have customer-workload scheduled

1.2.2 Prepare for installing RKE2 agent node(s)

To prepare for the installing of any RKE2 agent nodes we need to retrieve the so called node-token from the rke2-server

node. This token can be found in /var/lib/rancher/rke2/server/node-token

Please lookup the token using the following command and store in a safe place. You will need it here after.

▶ sudo cat /var/lib/rancher/rke2/server/node-token

This token needs to be mentioned in a config.yaml file for the rke2-agent installations on the rke2-agent nodes.

Kindly create a file called rke2-join-agent-config.yaml in your home directory and put the following info in it:

server: https://<rke2-server-node>:9345

token: <node-token>

• For server please add the hostname of your rke2-server node.

• For token please add the node-token retrieved in above step.

Your rke2-join-agent-config.yaml file should look a little like this:

server: https://k8sc903n01:9345

token:␣

→˓K1066bf857b5cb1b9a40d111ace22fac1177a4bdc19e6424c2a678e0b4273fb8cf5::server:ff544d6ba9b39ac62a817199d4249e39

Note:

This config.yaml file is the way we are going to enable and configure add-ons and customizations to our cluster

later in these labs.

Now that we have create the rke2-join-agent-config.yaml file we need to copy it to each of the rke2-agent nodes that

we would like to add to our cluster. In our case where we have:

• k8sc903n02

• k8sc903n03

as our rke2-nodes we are going to copy the rke2-join-agent-config.yaml to each of them:

▶ scp rke2-agent-config.yaml k8sc903n02:

▶ scp rke2-agent-config.yaml k8sc903n03:

1.2.3 Installing and adding RKE2 agent nodes to the K8S cluster

Please login on your the node that will become your first rke2-agent. In our case that will be the k8sc903n02.

We need to execute the following 4 steps to join the rke2-agent to the existing rke2-server:

• Step 1: We need to install the RKE2 agent binary.

▶ curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_TYPE=”agent” sh -

1.2. Install RKE2 7

PVD903-RKE2 WORKBOOK, Release 231214

Note:

This is of course actually the same command we executed on the rke2-server node, but now we have set the IN-

STALL_RKE2_TYPE=”agent” ENV var.

• Step 2: We need to copy the rke2-join-agent-config.yaml file we crafted on the rke2-server and copy it to the

proper RKE2 directory, so the RKE2 agent install process can use the information it to join our rke2-agent to the already

available rke2-server.

▶ sudo mkdir -p /etc/rancher/rke2

▶ sudo cp rke2-join-agent-config.yaml /etc/rancher/rke2/config.yaml

• Step 3: Now we need to enable and install the rke2-agent service.

▶ sudo systemctl enable rke2-agent --now

Now we have to wait once more until the systemctl command returns. In the meantime we can take a look in the installa-

tion/configuration process of the rke2-agent by consulting it’s log using journalctl. This can be done by backgrounding the

systemctl process (Press Ctrl-Z and type bg) or by accessing the system using a new terminal session.

The optional command to view the rke2-server installation progress is:

▶ sudo journalctl -u rke2-agent -lf

Note:

This will run a tail on the rke2-agent log. You can abort the log viewing/following by pressing Ctrl-C

Note:

In the logs you will find a lot of error conditions and timeouts. This is normal behaviour as the different components

of RKE2/K8S need to come up, find eachother and stabilize. Once more, it’s all about loosely coupled components,

remember?

Once the systemctl command returns we can resume with checking if our rke2-agent has joined our K8S cluster.

• Step 4: Verifying if our rke2-agent node has succesfully joined the cluster. For this we go back to the rke2-server node,

in the example case, k8sc903n01 and use kubectl get nodes to ascertain that the new rke2-node has been added

to the K8S cluster.

▶ kubectl get nodes

NAME STATUS ROLES AGE VERSION

k8sc903n01 Ready control-plane,etcd,master 15m38s v1.28.2+rke2r1

k8sc903n02 Ready control-plane,etcd,master 3m14s v1.28.2+rke2r1

You can repeat adding more rke2-agents by repeating the above 3 or 4 steps.

8 Chapter 1. Install RKE2 for single CP K8S cluster

PVD903-RKE2 WORKBOOK, Release 231214

1.2.4 Validating our RKE2 K8S cluster

If all the nodes have been joined, we can validate our cluster. For this we are going to verify the cluster in a number of steps:

• Step 1: Verify if all the nodes are up-and-ready

▶ kubectl get nodes

For a 1x rke2-server, 2 rke2-agents cluster the output would look like this: .. code-block:: console

NAME STATUS ROLES AGE VERSION k8sc903n01 Ready control-plane,etcd,master 18m42s

v1.28.2+rke2r1 k8sc903n02 Ready control-plane,etcd,master 6m18s v1.28.2+rke2r1 k8sc903n03 Ready

control-plane,etcd,master 3m18s v1.28.2+rke2r1

The status should be ready. If not we need to check the node(s) with kubectl describe node <node-name>

• Step 2: Verify the healthiness of the K8S engine room:

▶ kubectl get pods -n kube-system -n node

On the master node the following static PODS should be in Running state and no ‘recent’ restarts should be mentioned:

1. cloud-controller-manager

2. etcd

3. kube-apiserver

4. controller-manager

5. kuber-scheduler

For each of the nodes (server and agents) you should see an instance of the following PODs, state should be Running:

1. rke2-canal

2. kube-proxy

3. rke2-ingress-nginx-controller

On a 2-node cluster you should see 2 instances of each. On a 3-node cluster you should see of course 3 instances of the above

PODs. They are runningmanaged by so called DaemonSets,making sure that every node will have each once instance of these

specific PODs

More PODs will be running in the kube-system namespace. Check the rke2-coredns-rke2-coredns Pods in particular.

Also these should have state Running. They are of great importance as they will provide the service discovery / hostname

resolving in our cluster.

The PODs with names helm-install-* having states like ‘Completed’ are of no concern. It means these PODs that have been

created by K8S Jobs have done their work succesfully. In this case bringing up the Container Network Interface (CNI) CANAL

DaemonSet and the coredns Deployment.

Note:

In the kube-systemnamespace you should be able to see all PODs either in Running or Completed state. Any other

state either states that your RKE2 cluster is not (yet) ready or has some serious issues. Do check with journalctl

-u rke2-server -lf on the rke2-server node orjournalctl -u rke2-agent on the rke2-agent nodes for clues

on the root-cause of the issue(s)

1.2. Install RKE2 9

PVD903-RKE2 WORKBOOK, Release 231214

10 Chapter 1. Install RKE2 for single CP K8S cluster

2
Install RKE2 on ARM64 architectures

2.1 Introduction

In this lab we are going to work with installing RKE2 on non x86_64 / AMD64 architectures like aarch64 / ARM64

2.1.1 Requirements

To be able to execute this lab, you need at least 2 Ubuntu 22.04 (LTS) systems on ARM64. These systems can be for example

Raspberry PI4s, Rock5b, OrangePI5 etc. If you would like to add more rke2-agent nodes you can always add more ma-

chines. The ARM systems must have been equipped with at least 4 GB Memory and enough storage to store some containers

(approximately 8 GB free space should be ok). Mind the RKE2 does not support RISCV64 based systems yet.

Furthermore, you need an Internet connection to be able to access the RKE2 distribution and download some containers from

quay.io and docker.io.

In this lab we assume that there is an unprivileged user, named ‘student01’ available on this system. This user should be able

to execute privileged commands using the sudo utility. Of course your usermay have a different name, important is the access

to sudo su - root privileges.

If not already done, you can create on all nodes this user as root:

$> useradd -m -s /bin/bash student

$> passwd student01

$> echo ”student ALL=(ALL) NOPASSWD: ALL” | tee /etc/sudoers.d/89-student

Login again as the user student, and proceed this lab.

Bring your installation up-to-date, using:

▶ sudo apt update

▶ sudo apt upgrade -y

If systemd or the kernel is updated during this process, you need to reboot your system. If you are not sure: reboot it anyway.

▶ sudo systemctl reboot

Install the following software requirements:

▶ sudo apt -y install vim info wget curl elinks man-db manpages \

bash-completion psmisc jq ipvsadm yamllint conntrack \

apt-transport-https pinfo

Execute the update of your system and the installation of the software on each node.

11

PVD903-RKE2 WORKBOOK, Release 231214

2.1.2 Network Configuration

It is assumed that you have internet connection and for this lab that the local system firewall (UFW on Ubuntu) is disabled.

Please ensure it is disabled:

▶ sudo systemctl disable ufw --now

No further tuning of the network stack like with kubeadm is needed as the RKE2 installer binary will take care of it.

2.1.3 Swap

A requirement for Kubernetes is to have swap disabled, otherwise the Kubelet service will not start on the masters and nodes.

The idea of Kubernetes is to directly terminate overcommittingworkloads as not to jeopardize theworkload on the K8S cluster

that nicely abides to the rules. Remember the principle of Cattle vs. Pets in K8S.

▶ sudo systemctl disable --now swap.target

▶ sudo systemctl mask swap.target

▶ sudo sed -i '/swap/d' /etc/fstab

▶ sudo swapoff -a

Again, repeat this on every node.

2.1.4 Raspberry Pi OS

Note:

You can skip this part if you are not running Rapberry Pi OS. So if you are setting RKE2 up on a Raspberry PI but

running with Ubuntu 22.04 LTS or with another ARM64 based system running Ubuntu 22.04, you will not have to do

these preparations.

If your ARM64 system is a Raspberry PI running Raspberry PI OS it currently lacks the configuration of cgroups-v2 in the

kernel commandline. This will prevent RKE2 or any K8S version from installing on your system. In order to fix this you will

need to edit your /boot/cmdline.txt and the kernel options cgroup_enable=memory cgroup_memory=1 to it like this:

console=serial0,115200 console=tty1 root=PARTUUID=<redacted> rootfstype=ext4 fsck.repair=yes␣

→˓rootwait cgroup_enable=memory cgroup_memory=1

After you have changed the file you will need to reboot your Raspberry PI:

▶ sudo reboot

As Raspberry PI OS does not by default install the iptables package, we will need to do that manually on these platforms:

▶ sudo apt install iptables -y

12 Chapter 2. Install RKE2 on ARM64 architectures

PVD903-RKE2 WORKBOOK, Release 231214

2.2 Install RKE2

We will now use a 2 step process to install K8S using the RKE2 distribution on your systems:

1. Install RKE2 server on the system what will fulfill the role of master node for our K8S cluster.

2. Join the other servers that will play the role of (worker-)nodes by installing and configuring rke2-server on these.

In the examples shown here under we will have 3 systems:

Nr Hostname Role Config

1 rpb58-n01 RKE2 server 4cpu, 8GiB RAM

2 rock5b-n11 RKE2 agent #1 8cpu, 16GiB RAM

3 rock5b-n12 RKE2 agent #2 8cpu, 16GiB RAM

For all the steps, use your normal unprivileged user. When elevated rights are needed, the examples will clearly show the use

of the prefix sudo. Do NOT, I repeat, do NOT run these commands under the root user.

2.2.1 Install RKE2 server node

For ARM64 based architectures we need to do this step a little bit different from X86_64/AMD64 based architectures. The

reason for this is that the first release where RKE2 supports ARM64 platforms is: v1.27.3+rke2r1. And event that one is

from experience still flaky. Whenwe are using the default install instructions it will still try to happily install a v1.26.x version

for us that simply isn’t available for ARM64. We can use ENV variables however to request RKE2 to install a version that does

have ARM64 support and runs stable. We will choose version v1.27.8+rke2r1 for our setup.

Log on to the system that will take the role of your RKE2 server node. On this node execute the following steps:

• Step 1: Downloading the RKE2 binary version v1.27.8+rke2r1

▶ curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_VERSION=v1.27.8+rke2r1 sh -

Note:

Not specifying the INSTALL_RKE2_TYPE environment variable will always result in installing a ‘rke2-server’ node.

Note:

If you want you can install later version from the 1.27 or the 1.28 release. Kindly look at:

• https://docs.rke2.io/release-notes/v1.27.X

• https://docs.rke2.io/release-notes/v1.28.X

• etc.

which versions are available to you.

• Step 2: Enabling install and configuration of the RKE2 server node

▶ sudo systemctl enable rke2-server.service --now

Now we have to wait until the systemctl command returns. In the meantime we can take a look in the installation/config-

uration process of the rke2-server by consulting it’s log using journalctl. This can be done by backgrounding the systemctl

process (Press Ctrl-Z and type bg) or by accessing the system using a new terminal session.

The optional command to view the rke2-server installation progress is:

2.2. Install RKE2 13

https://docs.rke2.io/release-notes/v1.27.X
https://docs.rke2.io/release-notes/v1.28.X

PVD903-RKE2 WORKBOOK, Release 231214

▶ sudo journalctl -u rke2-server -lf

Note:

This will run a tail on the rke2-server log. You can abort the log viewing/following by pressing Ctrl-C

Note:

In the logs you will find a lot of error conditions and timeouts. This is normal behaviour as the different components

of RKE2/K8S need to come up, find eachother and stabilize. It’s all about loosely coupled components, remember?

Once the systemctl command returns we can resume with arranging our access to the RKE2/K8S cluster.

• Step 3: Create the directory .kube in your homedir and copy RKE2’s kubeconfig file into it. We must not forget to set

the proper owner/group to it so we can access it.

▶ mkdir -p ~/.kube

▶ sudo cp /etc/rancher/rke2/rke2.yaml ~/.kube/config

▶ sudo chown ${USER}:${USER} ~/.kube/config

Note:

RKE2 has a different name for the kubeconfig file as kubeadm has. For RKE2 it’s called rke2.yaml and located in

/etc/rancher/rke2/rke2.yaml

Note:

If not already done so, youwill need to install thekubectl so thatwe can access ourRKE2K8S cluster. The commands

for installing it are:

• Step 4: Install kubectl binary to access our cluster if not already done so:

▶ curl -LO ”https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/

→˓linux/amd64/kubectl”

▶ sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

Now we can check if our RKE2 cluster or actually still only the rke2-server node is coming up healthy:

• Step 5: Check with kubectl get nodes if the rke-server node is healthy.

▶ kubectl get nodes

NAME STATUS ROLES AGE VERSION

rpb58-n01 Ready control-plane,etcd,master 3m20s v1.28.2+rke2r1

• Step 6: If the rke2-server node is not ready yet we can watch or troubleshoot the install by taking a look at the K8S

engine room, the kube-system namespace:

▶ kubectl get pods

14 Chapter 2. Install RKE2 on ARM64 architectures

PVD903-RKE2 WORKBOOK, Release 231214

NAME READY STATUS RESTARTS ␣

→˓AGE

cloud-controller-manager-rpb58-n01 1/1 Running 0 ␣

→˓2m12s

etcd-rpb58-n01 1/1 Running 0 ␣

→˓2m12s

helm-install-rke2-canal-2tsct 0/1 Completed 0 ␣

→˓2m24s

helm-install-rke2-coredns-hthzg 0/1 Completed 0 ␣

→˓2m24s

kube-apiserver-rpb58-n01 1/1 Running 0 ␣

→˓2m14s

kube-controller-manager-rpb58-n01 1/1 Running 0 ␣

→˓2m24s

kube-proxy-rpb58-n01 1/1 Running 0 ␣

→˓2m14s

kube-scheduler-rpb58-n01 1/1 Running 0 ␣

→˓2m24s

rke2-canal-47kgn 2/2 Running 0 ␣

→˓2m12s

rke2-coredns-rke2-coredns-67f86d96c-8j5b8 1/1 Running 0 ␣

→˓2m24s

rke2-coredns-rke2-coredns-autoscaler-d97d9cd9f-b9dqf 1/1 Running 0 ␣

→˓2m24s

rke2-ingress-nginx-controller-4tj8g 1/1 Running 0 ␣

→˓2m12s

rke2-metrics-server-c6fb46b64-fvg29 1/1 Running 0 ␣

→˓2m24s

rke2-snapshot-controller-59cc9cd8f4-9h65p 1/1 Running 0 ␣

→˓2m24s

rke2-snapshot-validation-webhook-54c5989b65-l4dpt 1/1 Running 0 ␣

→˓2m24s

Note:

In the kube-systemnamespace you should be able to see all PODs either in Running or Completed state. Any other

state either states that your RKE2 cluster is not (yet) ready or has some serious issues. Do check with journalctl

-u rke2-server -lf for clues on the root-cause of the issue(s)

Note:

By default on RKE2 server-nodes, the so called noschedule taint is not configured. This means that master nodes

do allow to have customer-workload scheduled

2.2.2 Prepare for installing RKE2 agent node(s)

To prepare for the installing of any RKE2 agent nodes we need to retrieve the so called node-token from the rke2-server

node. This token can be found in /var/lib/rancher/rke2/server/node-token

Please lookup the token using the following command and store in a safe place. You will need it here after.

▶ sudo cat /var/lib/rancher/rke2/server/node-token

This token needs to be mentioned in a config.yaml file for the rke2-agent installations on the rke2-agent nodes.

Kindly create a file called rke2-join-agent-config.yaml in your home directory and put the following info in it:

2.2. Install RKE2 15

PVD903-RKE2 WORKBOOK, Release 231214

server: https://<rke2-server-node>:9345

token: <node-token>

• For server please add the hostname of your rke2-server node.

• For token please add the node-token retrieved in above step.

Your rke2-join-agent-config.yaml file should look a little like this:

server: https://rpb58-n01:9345

token:␣

→˓K1066bf857b5cb1b9a40d111ace22fac1177a4bdc19e6424c2a678e0b4273fb8cf5::server:ff544d6ba9b39ac62a817199d4249e39

Note:

This config.yaml file is the way we are going to enable and configure add-ons and customizations to our cluster

later in these labs.

Now that we have create the rke2-join-agent-config.yaml file we need to copy it to each of the rke2-agent nodes that

we would like to add to our cluster. In our case where we have:

• rock5b-n11

• rock5b-n12

as our rke2-nodes we are going to copy the rke2-join-agent-config.yaml to each of them:

▶ scp rke2-join-agent-config.yaml rock5b-n11:

▶ scp rke2-join-agent-config.yaml rock5b-n12:

2.2.3 Installing and adding RKE2 agent nodes to the K8S cluster

Please login on your the node that will become your first rke2-agent. In our case that will be the rock5b-n11.

We need to execute the following 4 steps to join the rke2-agent to the existing rke2-server:

• Step 1: We need to install the RKE2 agent binary.

Please note this needs to be the same INSTALL_RKE2_VERSION as we used on the server.

▶ curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_VERSION=v1.27.8+rke2r1 INSTALL_RKE2_TYPE=

→˓”agent” sh -

Note:

This is of course actually the same command we executed on the rke2-server node, but now we have set the IN-

STALL_RKE2_TYPE=”agent” ENV var.

• Step 2: We need to copy the agent-config.yaml file we crafted on the rke2-server and copy it to the proper RKE2

directory, so the RKE2 agent install process can use the information it to join our rke2-agent to the already available

rke2-server.

▶ sudo mkdir -p /etc/rancher/rke2

▶ sudo cp rke2-join-agent-config.yaml /etc/rancher/rke2/config.yaml

• Step 3: Now we need to enable and install the rke2-agent service.

16 Chapter 2. Install RKE2 on ARM64 architectures

PVD903-RKE2 WORKBOOK, Release 231214

▶ sudo systemctl enable rke2-agent --now

Now we have to wait once more until the systemctl command returns. In the meantime we can take a look in the installa-

tion/configuration process of the rke2-agent by consulting it’s log using journalctl. This can be done by backgrounding the

systemctl process (Press Ctrl-Z and type bg) or by accessing the system using a new terminal session.

The optional command to view the rke2-server installation progress is:

▶ sudo journalctl -u rke2-agent -lf

Note:

This will run a tail on the rke2-agent log. You can abort the log viewing/following by pressing Ctrl-C

Note:

In the logs you will find a lot of error conditions and timeouts. This is normal behaviour as the different components

of RKE2/K8S need to come up, find eachother and stabilize. Once more, it’s all about loosely coupled components,

remember?

Once the systemctl command returns we can resume with checking if our rke2-agent has joined our K8S cluster.

• Step 4: Verifying if our rke2-agent node has succesfully joined the cluster. For this we go back to the rke2-server node,

in the example case, rpb58-n01 and use kubectl get nodes to ascertain that the new rke2-node has been added to

the K8S cluster.

▶ kubectl get nodes

NAME STATUS ROLES AGE VERSION

rpb58-n01 Ready control-plane,etcd,master 15m38s v1.28.2+rke2r1

rock5b-n11 Ready control-plane,etcd,master 3m14s v1.28.2+rke2r1

You can repeat adding more rke2-agents by repeating the above 3 or 4 steps.

2.2.4 Validating our RKE2 K8S cluster

If all the nodes have been joined, we can validate our cluster. For this we are going to verify the cluster in a number of steps:

• Step 1: Verify if all the nodes are up-and-ready

▶ kubectl get nodes

For a 1x rke2-server, 2 rke2-agents cluster the output would look like this: .. code-block:: console

NAME STATUS ROLES AGE VERSION rpb58-n01 Ready control-plane,etcd,master 18m42s v1.28.2+rke2r1

rock5b-n11 Ready control-plane,etcd,master 6m18s v1.28.2+rke2r1 rock5b-n12 Ready control-plane,etcd,master

3m18s v1.28.2+rke2r1

The status should be ready. If not we need to check the node(s) with kubectl describe node <node-name>

• Step 2: Verify the healthiness of the K8S engine room:

▶ kubectl get pods -n kube-system -n node

On the master node the following static PODS should be in Running state and no ‘recent’ restarts should be mentioned:

1. cloud-controller-manager

2. etcd

2.2. Install RKE2 17

PVD903-RKE2 WORKBOOK, Release 231214

3. kube-apiserver

4. controller-manager

5. kuber-scheduler

For each of the nodes (server and agents) you should see an instance of the following PODs, state should be Running:

1. rke2-canal

2. kube-proxy

3. rke2-ingress-nginx-controller

On a 2-node cluster you should see 2 instances of each. On a 3-node cluster you should see of course 3 instances of the above

PODs. They are runningmanaged by so called DaemonSets,making sure that every node will have each once instance of these

specific PODs

More PODs will be running in the kube-system namespace. Check the rke2-coredns-rke2-coredns Pods in particular.

Also these should have state Running. They are of great importance as they will provide the service discovery / hostname

resolving in our cluster.

The PODs with names helm-install-* having states like ‘Completed’ are of no concern. It means these PODs that have been

created by K8S Jobs have done their work succesfully. In this case bringing up the Container Network Interface (CNI) CANAL

DaemonSet and the coredns Deployment.

Note:

In the kube-systemnamespace you should be able to see all PODs either in Running or Completed state. Any other

state either states that your RKE2 cluster is not (yet) ready or has some serious issues. Do check with journalctl

-u rke2-server -lf on the rke2-server node orjournalctl -u rke2-agent on the rke2-agent nodes for clues

on the root-cause of the issue(s)

18 Chapter 2. Install RKE2 on ARM64 architectures

3
Installing and configuring add-ons for RKE2

3.1 Introduction

In this lab we are going to work with installing RKE2 with supplied add-ons and we will learn how to configure these.

We will practice using/configuring the boxed-in add-ons:

• RKE2 supplied metrics server

• RKE2 supplied Ingress-nginx controller

And we will practice installing and configuring our own add-ons:

• OpenEBS storage provisioner

• Cilium Container Network Interface

3.2 Requirements

A working RKE2 cluster on AMD64 or ARM64.

3.3 Boxed in add-ons

Out of the box RKE2 supplies you with:

1. Canal CNI for K8S Networking

2. CoreDNS for K8S DNS services and service discovery

3. K8S Metrics Server for insights in resource usage using kubectl top etc.

4. ETCD snapshot controller for backing up and restoring the ETCD cluster database

5. Ingress controller of the type Ingress-nginx

6. Helm controller to install additional components using Helm charts

In this part we will focus on working with the K8S Metrics Server and the Ingress-nginx controller

19

PVD903-RKE2 WORKBOOK, Release 231214

3.3.1 K8S Metrics Server

We don’t need to configure anything for the Metrics Server and can use it out of the box:

▶ kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

rock5b-n11 360m 4% 3461Mi 22%

rock5b-n12 305m 3% 1203Mi 7%

rpb58-n01 274m 6% 2215Mi 27%

This will show use the resource usage of each node in our cluster.

With kubectl top pods we can see the resource usage of the PODs in a certain namespace:

▶ kubectl top pods -n default

NAME CPU(cores) MEMORY(bytes)

tst-containers-68c464d94f-b65nm 7m 8Mi

Note:

The K8S Metrics Server will also provide metrics for K8S Horizontal Pod Autoscaling (HPA)

3.3.2 Ingress-nginx controller

Architecture

Let’s look at how the ingress-nginx controller is deployed with RKE2:

▶ kubectl get pods -n kube-system -l app.kubernetes.io/name=rke2-ingress-nginx

This will display all PODs belonging to the ingress-nginx-controller.

NAME READY STATUS RESTARTS AGE

rke2-ingress-nginx-controller-2p4vv 1/1 Running 0 8h

rke2-ingress-nginx-controller-6nllx 1/1 Running 0 8h

rke2-ingress-nginx-controller-qfj9h 1/1 Running 0 86m

Note that it’s deployed as a daemonset. The single generated name part to the POD name will hint at it and a kubectl get

ds rke2-ingress-nginx-controller -n kube-system will prove it.

As these are PODs in a DaemonSet we do not get access to them using a service. PODs in a DaemonSet are normally accessed

using the NODE IP addresses and can use so called low ports.

To access the ingress-nginx-controller we can use a command like:

▶ curl -k https://rock5b-n12

20 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

You will receive output like:

* Trying 10.8.62.238:443...

* Connected to rock5b-n11 (10.8.62.238) port 443 (#0)

* ALPN: offers h2,http/1.1

* TLSv1.3 (OUT), TLS handshake, Client hello (1):

* TLSv1.3 (IN), TLS handshake, Server hello (2):

* TLSv1.2 (IN), TLS handshake, Certificate (11):

* TLSv1.2 (IN), TLS handshake, Server key exchange (12):

* TLSv1.2 (IN), TLS handshake, Server finished (14):

* TLSv1.2 (OUT), TLS handshake, Client key exchange (16):

* TLSv1.2 (OUT), TLS change cipher, Change cipher spec (1):

* TLSv1.2 (OUT), TLS handshake, Finished (20):

* TLSv1.2 (IN), TLS handshake, Finished (20):

* SSL connection using TLSv1.2 / ECDHE-RSA-AES128-GCM-SHA256

* ALPN: server accepted h2

* Server certificate:

* subject: O=Acme Co; CN=Kubernetes Ingress Controller Fake Certificate

* start date: Dec 8 23:23:28 2023 GMT

* expire date: Dec 7 23:23:28 2024 GMT

* issuer: O=Acme Co; CN=Kubernetes Ingress Controller Fake Certificate

* SSL certificate verify result: self-signed certificate (18), continuing anyway.

* using HTTP/2

* h2h3 [:method: GET]

* h2h3 [:path: /]

* h2h3 [:scheme: https]

* h2h3 [:authority: rock5b-n11]

* h2h3 [user-agent: curl/7.88.1]

* h2h3 [accept: */*]

* Using Stream ID: 1 (easy handle 0x5556038fca90)

> GET / HTTP/2

> Host: rock5b-n11

> user-agent: curl/7.88.1

> accept: */*

>

< HTTP/2 404

< date: Sat, 09 Dec 2023 08:24:46 GMT

< content-type: text/html

< content-length: 146

< strict-transport-security: max-age=15724800; includeSubDomains

<

<html>

<head><title>404 Not Found</title></head>

<body>

<center><h1>404 Not Found</h1></center>

<hr><center>nginx</center>

</body>

</html>

* Connection #0 to host rock5b-n11 left intact

This is definitely coming from the ingress-nginx-controller as you can see from the server certificate part of

the output.

When you are connecting to the Ingress Controller on port 80 or 443 on any of your nodes this will connect you to

the appropriate service as directed by the Ingress API resource. Mind the difference between the Controller (aka the

software) and the Ingress aka the configuration telling the Controller what to serve when someone is connecting to it.

You can place a LB that using a Virtual IP (VIP) address that will connect you to any node that has the Ingress Controller

listening on port 80 and/or 443.

3.3. Boxed in add-ons 21

PVD903-RKE2 WORKBOOK, Release 231214

Using the Ingress controller

Let’s deploy 2 microservices, a blue and a green one that will show some ASCII art in color.

Deploying the demo-blue microservice

1. Creating the demo-blue deployment

Listing 1: deploy-demo-blue.yaml

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 labels:

5 app: demo-blue

6 name: demo-blue

7 spec:

8 replicas: 3

9 selector:

10 matchLabels:

11 app: demo-blue

12 strategy: {}

13 template:

14 metadata:

15 labels:

16 app: demo-blue

17 spec:

18 containers:

19 - image: quay.io/pamvdam/containers:1.4

20 name: containers

21 env:

22 - name: COLOR

23 value: blue

24 ports:

25 - containerPort: 8080

2. Creating the demo-blue service

Create a file called svc-blue.yaml with the following content:

Listing 2: svc-blue.yaml

1 apiVersion: v1

2 kind: Service

3 metadata:

4 labels:

5 app: demo-blue

6 name: demo-blue

7 spec:

8 ports:

9 - port: 8080

10 protocol: TCP

11 targetPort: 8080

12 selector:

13 app: demo-blue

22 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

Deploying the demo-green microservice

1. Creating the demo-green deployment

Listing 3: deploy-demo-blue.yaml

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 labels:

5 app: demo-green

6 name: demo-green

7 spec:

8 replicas: 3

9 selector:

10 matchLabels:

11 app: demo-green

12 strategy: {}

13 template:

14 metadata:

15 labels:

16 app: demo-green

17 spec:

18 containers:

19 - image: quay.io/pamvdam/containers:1.4

20 name: containers

21 env:

22 - name: COLOR

23 value: green

24 ports:

25 - containerPort: 8080

2. Creating the demo-green service

Create a file called svc-green.yaml with the following content:

Listing 4: svc-blue.yaml

1 apiVersion: v1

2 kind: Service

3 metadata:

4 labels:

5 app: demo-green

6 name: demo-green

7 spec:

8 ports:

9 - port: 8080

10 protocol: TCP

11 targetPort: 8080

12 selector:

13 app: demo-green

3.3. Boxed in add-ons 23

PVD903-RKE2 WORKBOOK, Release 231214

Configuring ingress for both microservices

1. Create a file called demo-ingress.yaml with the following content:

Listing 5: deploy-ingress.yaml

1 apiVersion: networking.k8s.io/v1

2 kind: Ingress

3 metadata:

4 creationTimestamp: null

5 name: containers

6 spec:

7 rules:

8 - host: blue.containers.k8s

9 http:

10 paths:

11 - backend:

12 service:

13 name: demo-blue

14 port:

15 number: 8080

16 path: /

17 pathType: Exact

18 - host: green.containers.k8s

19 http:

20 paths:

21 - backend:

22 service:

23 name: demo-green

24 port:

25 number: 8080

26 path: /

27 pathType: Exact

1. Apply the ingress (configuration):

kubectl apply -f demo-ingress.yaml

24 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

Configuring ingress for both microservices

1. Testing the access through the ingress for the blue service

curl -H 'Host: blue.containers.k8s' rpb58-n01

Listing 6: curl-blue.out

1 (((((((((

2 .(((((((((((((((((.

3 .((((((((((((&((((((((((((.

4 /((((((((((((((((@((((((((((((((((/

5 ((((((((((((((((((@((((((((((((((((((

6 *(((((##((((((@@@@@@@@@@@((((((%#(((((*

7 (((((((@@@(@@@@#((@@@((#@@@@(@@@(((((((

8 *(((((((((@@@@(((((@@@(((((@@@@(((((((((,

9 (((((((((@@@%@@@@((@@@((@@@@%@@@(((((((((

10 .(((((((((@@((((@@@@@@@@@@@((((@@(((((((((.

11 (((((((((&@@(((((@@@(((@@@(((((@@&(((((((((

12 (((((((((&@@@@@@@@@@#(#@@@@@@@@@@&(((((((((

13 ((((((@@@@@@@@(((((@@@@@@@(((((&@@@@@@@((((((

14 (((((((((((%@@((((%@@@(@@@%((((@@&(((((((((((

15 ((((((((((((@@@((@@%(((%@@((@@@((((((((((((

16 (((((((((((#@@@@%(((((&@@@@#(((((((((((

17 /(((((((((((@@@@@@@@@@@@@(((((((((((/

18 (((((((((@@(((((((((((@@(((((((((

19 (((((((&(((((((((((((&(((((((

20 /(((((((((((((((((((((((((/

21 (((((((((((((((((((((((

22

23 This container is running in KUBERNETES on demo-blue-68f6f4f4b6-gnnwx (10.42.0.8)

2. Testing the access through the ingress for the green service

curl -H 'Host: green.containers.k8s' rpb58-n01

Listing 7: curl-green.out

1 (((((((((

2 .(((((((((((((((((.

3 .((((((((((((&((((((((((((.

4 /((((((((((((((((@((((((((((((((((/

5 ((((((((((((((((((@((((((((((((((((((

6 *(((((##((((((@@@@@@@@@@@((((((%#(((((*

7 (((((((@@@(@@@@#((@@@((#@@@@(@@@(((((((

8 *(((((((((@@@@(((((@@@(((((@@@@(((((((((,

9 (((((((((@@@%@@@@((@@@((@@@@%@@@(((((((((

10 .(((((((((@@((((@@@@@@@@@@@((((@@(((((((((.

11 (((((((((&@@(((((@@@(((@@@(((((@@&(((((((((

12 (((((((((&@@@@@@@@@@#(#@@@@@@@@@@&(((((((((

13 ((((((@@@@@@@@(((((@@@@@@@(((((&@@@@@@@((((((

14 (((((((((((%@@((((%@@@(@@@%((((@@&(((((((((((

15 ((((((((((((@@@((@@%(((%@@((@@@((((((((((((

16 (((((((((((#@@@@%(((((&@@@@#(((((((((((

17 /(((((((((((@@@@@@@@@@@@@(((((((((((/

18 (((((((((@@(((((((((((@@(((((((((

19 (((((((&(((((((((((((&(((((((

20 /(((((((((((((((((((((((((/

21 (((((((((((((((((((((((

22

23 This container is running in KUBERNETES on demo-green-7c8dfff7db-t6hbk (10.42.2.9)

3. Testing the access through the ingress for an unconfigured URL/service

3.3. Boxed in add-ons 25

PVD903-RKE2 WORKBOOK, Release 231214

curl -H 'Host: black.containers.k8s' rpb58-n01

Listing 8: curl-black.out

1 <html>

2 <head><title>404 Not Found</title></head>

3 <body>

4 <center><h1>404 Not Found</h1></center>

5 <hr><center>nginx</center>

6 </body>

7 </html>

In a picture:

26 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

3.3.3 Custom Add-ons

Introduction

Custom add-ons in RKE2 are added using the Helm chart controller that is running in the kube-system namespace of

RKE2. The Helm controller is deployed by default on an RKE2 installation.

This Helm chart controller can be provided with YAML files during bootstrap that have been stored in the directory

/var/lib/rancher/rke2/server/manifests.

Post-setup, so when your RKE2/K8S cluster is already fully running, you can use the Helm chart controller to deploy

applications/tools using Helm charts.

The YAML needed to deploy a Helm chart using the Helm chart controller looks like this:

Listing 9: helmchart-openebs.yaml

apiVersion: helm.cattle.io/v1

kind: HelmChart

metadata:

name: openebs

namespace: kube-system

spec:

chart: openebs

repo: https://openebs.github.io/charts

targetNamespace: openebs

Table 1: OpenEBS HelmChart YAML Explanation

Field Value Explanation
apiVersion helm.cattle.io/v1 Specifies the API version of the Helm chart CRD.

kind HelmChart Indicates the kind of Kubernetes resource; a Helm chart

managed by RKE2.

metadata.name openebs The name of the HelmChart resource; a unique identifier

within the namespace.

metadata.

namespace

kube-system The namespace where the HelmChart resource will be cre-

ated; typically ‘kube-system’ for RKE2.

spec.chart openebs The name of the Helm chart to be deployed.

spec.repo https://openebs.github.

io/charts

The repository URL where the Helm chart is hosted.

spec.

targetNamespace

openebs The target namespace where the Helm chart will be de-

ployed; must be created beforehand if it doesn’t exist.

spec.

valuesContent

- The contents of the values file

This is a simple example without the Helm charts values included. It will roll out the OpenEBS Helm chart using the default

values that come with it.

If you already have an RKE2 cluster running you can deploy this Helm-chart by creating the above file

(helm-chart-openebsyaml) and submitting it to your cluster with the following command:

▶ kubectl create ns openebs

▶ kubectl apply -f helmchart-openebs.yaml

Once you have done this, the helm-chart-controllerwill wake up and process the YAML. The helm chartwill be pulled

from it’s specified repo and deployed. Please note that the helm-chart-controller does not create the namespaces for

you. You will need to that upfront yourself, like in the example.

You can check which helmcharts have been deployed using the helm-chart-controller by issuing the following com-

mand:

▶ kubectl get helmcharts -A

3.3. Boxed in add-ons 27

PVD903-RKE2 WORKBOOK, Release 231214

You can remove helmchart deploy done by the helm-chart-controller by deleting the helmchart yaml. E.g. if you

would like to delete above OpenEBS chart you will need to issue a command like this:

▶ kubectl delete helmchart openebs -n kube-system

Remember that by default the helmcharts themselves get deployed in namespace kube-system where the

helm-chart-controller is running. The applications described by the helmcharts can be deployed in any names-

pace specified as long as it’s already created.

In the case you want to update an already deployed helmchart for example because you would like to reconfigure it, you can

update the helmchart YAML and re-apply it. E.g:

Listing 10: helmchart-openebs-values.yaml

apiVersion: helm.cattle.io/v1

kind: HelmChart

metadata:

name: openebs

namespace: kube-system

spec:

chart: openebs

repo: https://openebs.github.io/charts

targetNamespace: openebs

valuesContent: |-

Enable LocalPV

localpv:

enabled: true

hostpath:

basePath: ”/var/openebs/local”

device:

basePath: ”/dev”

Enable NDM (Node Disk Manager)

ndm:

enabled: true

Enable Node Disk Operator

ndmOperator:

enabled: true

Additional feature configurations

featureGates:

CSI: ”true”

AdmissionWebhook: ”true”

▶ kubectl apply -f helmchart-openebs.yaml

The helm-chartwill be updated andwhen needed a redeployment will be triggerd, like when applied with the CLI helm tool.

We have now described using the helm-controller when the cluster is already up-and-running. You can also use helm-

charts and the helm-chart-controller when installing your RKE2 cluster so it will directly have all the add-ons you

want after install. In order to do this you will need to add the helmchart yaml manifests on the node that will be your

first RKE2 server node. All YAML files in the directory /var/lib/rancher/rke2/server/manifests will be processed

by the RKE2 server. Please note that this declarative use of K8S so we never know upfront if the YAML will lead to the correct

deployment of the desired add-on. So we have to make sure that all requirements have been arranged for.

In the case of helmcharts that the helm-chart-controllerwill pick up once it comes alive on the RKE2 cluster, wemust

make sure that the namespace where our add-on will be deployed by the helmchart is pre-created.

Best practice is to prepend a piece of YAML to the helmchart file that will create the namespace upfront. In the case of

OpenEBS that gets deployed in the openebs namespace we can use a YAML manifest like this:

28 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

Listing 11: helmchart-openebs-values-ns.yaml

apiVersion: v1

kind: Namespace

metadata:

name: openebs

apiVersion: helm.cattle.io/v1

kind: HelmChart

metadata:

name: openebs

namespace: kube-system

spec:

chart: openebs

repo: https://openebs.github.io/charts

targetNamespace: openebs

If you place this file in the directory /var/lib/rancher/rke2/server/manifests it will be processed by the RKE2 server

setup process. Please note this is after installing the RKE2 server binary and prior to starting the rke2-server service with

systemctl enable rke2-server --now. As such you must pre-create the directory structure /var/lib/rancher/

rke2/server/manifests in order to be able to place the files in it.

OpenEBS

What is OpenEBS actually?

OpenEBS is an open-source storage platform that provides containerized block storage for cloud-native and other environ-

ments. It’s designed to be an easy-to-use, scalable, and agile storage solution, especially well-suited for Kubernetes environ-

ments. OpenEBS delivers us:

• Containerized Storage Volumes

OpenEBS enables the creation of highly available and scalable storage volumes that can be dynamically provisioned

and managed, much like other cloud-native resources.

• Kubernetes Integration

It is deeply integratedwith Kubernetes,making it a natural fit for Kubernetes-based applications. It uses the Container

Storage Interface (CSI) to seamlessly integrate with the Kubernetes ecosystem.

• Flexibility and Choice of Storage Engines

OpenEBS offers a variety of storage engines, such as Jiva, cStor, and LocalPV, to cater to different use cases like high

performance, resilience, or simplicity. Users can choose the most appropriate engine for their specific requirements.

• Replication and High Availability

It supports replication of data across multiple nodes, ensuring high availability and resilience of data.

• Snapshotting and Cloning

OpenEBS allows for taking snapshots of data volumes and cloning them, which can be useful for backup/restore oper-

ations and test/dev environments.

• Use Cases

It’s widely used for use cases like database storage, logging, and monitoring systems in Kubernetes, providing a persis-

tent and reliable storage layer.

To install OpenEBS at bootstrap time of your RKE2 system kindly execute the following steps:

1. Install RKE2 server using the curl | sh command described in one of the previous 2 modules.

2. Prior to starting up RKE2 with sudo systemctl enable rke2-server now executed the following commands:

▶ sudo mkdir -p /var/lib/rancher/rke2/server/manifests

1. Create the following file helm-chart file helmchart-openebs.yaml, if needed adapt it:

3.3. Boxed in add-ons 29

PVD903-RKE2 WORKBOOK, Release 231214

Listing 12: helmchart-openebs-values-ns.yaml

apiVersion: v1

kind: Namespace

metadata:

name: openebs

apiVersion: helm.cattle.io/v1

kind: HelmChart

metadata:

name: openebs

namespace: kube-system

spec:

chart: openebs

repo: https://openebs.github.io/charts

targetNamespace: openebs

1. Copy the file to the directory /var/lib/rancher/rke2/server/manifests

▶ sudo cp helmchart-openebs.yaml /var/lib/rancher/rke2/server/manifests

1. Now enable and start the rke2-server systemd service:

▶ sudo systemctl enable rke2-server --now

This only needs to be done once on the first rke2-server. You should not repeat it on any other rke2-server` or

``rke2-agent you are going to add. The helmchart will propagate the API resources over the rest of your cluster when

needed.

If you would like to install openebs using the helm-chart-controllerwhen you already have an up-and-running cluster

you can create the helmchart-openebs.yaml file, create the openebs namespace in RKE2 and submitting this YAML file

to the RKE2 cluster.

Listing 13: helmchart-openebs.yaml

apiVersion: helm.cattle.io/v1

kind: HelmChart

metadata:

name: openebs

namespace: kube-system

spec:

chart: openebs

repo: https://openebs.github.io/charts

targetNamespace: openebs

▶ kubectl create ns openebs

▶ kubectl apply -f helmchart-openebs.yaml

You can check if the OpenEBS installation went well by checking the openebs namespace:

▶ kubectl get pods -n openebs

You should see an output like this:

Listing 14: openebs-1.out

NAME READY STATUS RESTARTS AGE

openebs-localpv-provisioner-6b4f46dd8c-jckv4 1/1 Running 0 116m

openebs-ndm-4q5xw 1/1 Running 0 116m

openebs-ndm-cf5v2 1/1 Running 0 116m

openebs-ndm-operator-64fc5fc9c-kwvj5 1/1 Running 0 116m

openebs-ndm-pflxj 1/1 Running 0 116m

30 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

Of course the proof of the pudding is in the eating; so let’s try to get a Persistent Volume (PV) provisioned:

1. Create a YAML file called testpvc.yaml like this:

Listing 15: test-pvc.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: test-pvc

namespace: default

spec:

storageClassName: openebs-hostpath

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 1Mi

1. Submit the YAML file to the RKE2 server:

▶ kubectl apply -f test-pvc.yaml

1. After a little time, verify if a PV was created:

▶ kubectl get pvc

As you can see the PVC is still pending for a PV to be provisioned. This is by design as OpenEBS will wait for the first consumer

of the PVC before it will actually start provisioning the PV. So, let’s add the demand side.

Kindly create another YAML file describing a POD consuming the test-pvc PV.

Listing 16: test-pvc-pod.yaml

apiVersion: v1

kind: Pod

metadata:

name: my-openebs-pod

namespace: default

label:

run: my-openebs-pod

spec:

initContainers:

- name: init-web-content

image: busybox

command: ['sh', '-c', 'echo ”<H1>Welcome friends of RKE2!</H1>” > /web-root/index.html

→˓']

volumeMounts:

- name: storage

mountPath: /web-root

containers:

- name: my-container

image: nginx

volumeMounts:

- name: storage

mountPath: ”/usr/share/nginx/html”

volumes:

- name: storage

persistentVolumeClaim:

claimName: test-pvc

And submit it:

3.3. Boxed in add-ons 31

PVD903-RKE2 WORKBOOK, Release 231214

▶ kubectl apply -f test-pvc-pod.yaml

After a little while check again:

▶ kubectl get pvc

▶ kubectl get pv

▶ kubectl get pods -l run=my-openebs-pod -o wide

The PVC should be bound, the PV should be created and the POD should be online.

You can get the POD IP using kubectl get pods -l run=my-openebs-pod -o wide and try to curl it:

▶ kubectl get pods -l run=my-openebs-pod -o wide

▶ curl <pod-ip>

You should see someting like:

<H1>Welcome friends of RKE2!</H1>

Cilium CNI

By default RKE2 will come outfitted with the CANAL CNI out of the box. CANAL is actually Calico piggybacked over Flannel.

We have the ease of networking of Flannel (runs everywhere) and still we can wield the nice security features like Network

Policies that come with Calico CNI.

But sometimes, you would like to have another CNI installed like pure Calico (without the Flannel part) or the very powerful

and modern Cilium CNI with all the good stuff that it brings, like built-in Ingres, Clustermesh, Service Mesh, Load Balacning

and Observation tools.

In this part we are going to practice with installing Cilium instead of CANAL at setup time. Changing the CNI on an already

running RKE2 cluster is a real challenge if at all possible, so we are not going to chase that here.

In order to have a pristine new RKE2 cluster installed with RKE2 instead of the default CANALwe need to execute some steps:

1. Specify in an RKE2 server config file that we are going to use Cilium instead of CANAL

2. Optionally have Cilium take over kube-proxy functionality so we need to disable it in RKE2 K8S

3. Using the helm-chart-controller supply helm-chart for Cilium and any additional YAML config files for Cilium

Important; as written earlier, this can only be done easily at the setup of a new RKE2 cluster, so that will also be our starting

point.

Let’s get started:

1. Install the RKE2 server binary with curl like described in the previous examples.

Do NOT start the rke2-server. We will first need to deploy some files in the RKE2 directories.

2. Create a RKE2 config file to skip CANAL and select Cilium for our CNI

Kindly create the following yaml file called rke2-config-cilium.yaml with the following contents:

Listing 17: code/cilium/rke2-server-cilium-config.yaml

cni: cilium

disable-kube-proxy: true

In this example we are also disabling kube-proxy in RKE2 so that Cilium CNI can take over that funcionality in which

it can do much more efficient.

3. Create the directory /etc/rancher/rke2 and copy the rke2-server-cilium-config.yaml file into it.

..code:: bash

� sudo mkdir -p /etc/rancher/rke2

� sudo cp rke2-server-cilium-config.yaml /etc/rancher/rke2

4. Create a helmchart yaml file for the helm-chart-controller to deploy Cilium. Call it rke2-cilium-config.

yaml. An example is included here:

32 Chapter 3. Installing and configuring add-ons for RKE2

PVD903-RKE2 WORKBOOK, Release 231214

Listing 18: code/cilium/rke2-server-cilium-config.yaml

/var/lib/rancher/rke2/server/manifests/rke2-cilium-config.yaml

apiVersion: helm.cattle.io/v1

kind: HelmChartConfig

metadata:

name: rke2-cilium

namespace: kube-system

spec:

version: 1.14.4

valuesContent: |-

kubeProxyReplacement: strict

k8sServiceHost: k8sc903n01

k8sServicePort: 6443

cni:

chainingMode: ”none”

hubble:

enabled: true

relay:

enabled: true

ui:

enabled: true

ingressController:

enabled: true

loadBalancerMode: ”shared”

clustermesh:

config:

enabled: true

l2announcements:

enabled: true

leaseDuration: ”3s”

leaseRenewDeadline: ”1s”

leaseRetryPeriod: ”500ms”

externalIPs:

enabled: true

devices:

- ens2

5. Copy the rke2-cilium-config.yaml to the /var/lib/rancher/rke2/server/manifests directory.

▶ sudo mkdir -p /var/lib/rancher/rke2/server/manifests

▶ sudo cp rke2-cilium-config.yaml /var/lib/rancher/rke2/server/manifests

6. Create and copy any extra YAML files fo cilium under /var/lib/rancher/rke2/server/manifests

Tips:

• Please do check the cilium config files as these need to be tailored to your environment. Especially the

naming of the network devices. This goes beyond the scope of this workbook.

• Setting up a cluster on ARM64 with Cilium can take a little bit longer then you are used too with CANAL.

3.3. Boxed in add-ons 33

PVD903-RKE2 WORKBOOK, Release 231214

34 Chapter 3. Installing and configuring add-ons for RKE2

4
Backing up and restoring RKE2 clusters

4.1 Introduction

In this lab we are going to learn how we can:

1. Configure scheduled snapshots of our RKE2/ECTD store.

2. Make ad-hoc snapshots of our RKE2/ETCD store.

3. Restore an ETCD snapshot to recover our RKE2 cluster.

4.1.1 Requirements

• An up-and-running RKE2 cluster, it doens’t matter if it’s having a single server control plane or a multi-server HA

controlplane. We will cover backing up en restoring both.

4.1.2 How it works

The rke2-server takes care of ad hoc and periodic snapshotting of the cluster’s etcd database. The snapshot files are placed

by default in the directory /var/lib/rancher/rke2/server/db/snapshots. RKE2 will keep a default retention of 5

snapshots. When more then the configured etcd-snapshot-retention snapshots have been created, the oldest one will

get pruned. If needed you can also prune snapshots yourself.

4.1.3 Setting up etcd snapshotting

By default ectd snapshotting is enabled when you setup your RKE2 server with the defaults.

You can configure the etcd snapshotting mechanism by creating or adapting your /etc/rancher/rke2/config.yaml file.

E.g:

35

PVD903-RKE2 WORKBOOK, Release 231214

Listing 1: config.yaml

1 etcd-snapshot-schedule-cron: ”10 */4 * * *”

2 etcd-snapshot-retention: 10

The following options can be used:

Table 1: RKE2 etcd Snapshotting Configuration Options

Field Default Explanation
etcd-snapshot-sched-

ule-cron

”*/5 * * * *” Cron schedule to take automated etcd snapshots. For example,

“*/5 * * * *” means a snapshot is taken every 5 minutes.

etcd-snapshot-reten-

tion

5 The number of snapshots to retain. For example, ‘5’means the five

most recent snapshots are kept.

etcd-snapshot-dir /var/lib/

rancher/rke2/

server/db/

snapshots

The directory where etcd snapshots are stored. Can be set to a

custom path.

etcd-snapshot-com-

press

false Enable or disable compressed snapshots. Set to ‘true’ to enable.

etcd-s3 false Enable or disable backup to S3. Set to ‘true’ to enable.

etcd-s3-bucket ”” The name of the S3 bucket where snapshots are stored, if S3

backup is enabled.

etcd-s3-region ”” The region of the S3 bucket, if S3 backup is enabled.

etcd-s3-endpoint ”” The endpoint URL for S3, if S3 backup is enabled.

etcd-s3-access-key ”” The access key for S3, if S3 backup is enabled.

etcd-s3-secret-key ”” The secret key for S3, if S3 backup is enabled.

etcd-s3-folder ”” The folder within the S3 bucket to store snapshots, if S3 backup is

enabled.

etcd-s3-skip-ssl-ver-

ify

false Skip SSL certificate verification for S3, if S3 backup is enabled.

Useful in testing environments.

4.1.4 Making an ad hoc etcd snapshot

To make an ad hoc ectd snapshot, issue the following command:

▶ sudo rke2 etcd-snapshot now

4.1.5 Listing available etcd snapshots

To list the available etcd snapshots on the RKE2 server, use the following command:

▶ sudo rke2 etcd-snapshot ls

In the output you will recognize ad hoc and scheduled backups. Your output will look something like this:

Listing 2: Output of rke2 etcd-snapshot ls

Name Location ␣

→˓ Size Created

on-demand-rpb58-n01-1702240686 file:///var/lib/rancher/rke2/server/db/snapshots/on-

→˓demand-rpb58-n01-1702240686 10305568 2023-12-10T20:38:06Z

on-demand-rpb58-n01-1702240858 file:///var/lib/rancher/rke2/server/db/snapshots/on-

→˓demand-rpb58-n01-1702240858 10305568 2023-12-10T20:40:58Z

on-demand-rpb58-n01-1702240917 file:///var/lib/rancher/rke2/server/db/snapshots/on-

→˓demand-rpb58-n01-1702240917 10305568 2023-12-10T20:41:57Z

etcd-snapshot-rpb58-n01-1702243200.zip file:///var/lib/rancher/rke2/server/db/snapshots/etcd-

→˓snapshot-rpb58-n01-1702243200.zip 1276185 2023-12-10T21:20:00Z

etcd-snapshot-rpb58-n01-1702243804 file:///var/lib/rancher/rke2/server/db/snapshots/etcd-

(continues on next page)

36 Chapter 4. Backing up and restoring RKE2 clusters

PVD903-RKE2 WORKBOOK, Release 231214

(continued from previous page)

→˓snapshot-rpb58-n01-1702243804 6012960 2023-12-10T21:30:04Z

etcd-snapshot-rpb58-n01-1702244403 file:///var/lib/rancher/rke2/server/db/snapshots/etcd-

→˓snapshot-rpb58-n01-1702244403 6340640 2023-12-10T21:40:03Z

on-demand-rpb58-n01-1702244969 file:///var/lib/rancher/rke2/server/db/snapshots/on-

→˓demand-rpb58-n01-1702244969 6340640 2023-12-10T21:49:29Z

etcd-snapshot-rpb58-n01-1702245002 file:///var/lib/rancher/rke2/server/db/snapshots/etcd-

→˓snapshot-rpb58-n01-1702245002 6340640 2023-12-10T21:50:02Z

4.1.6 Restoring a etcd snapshot

We will discuss 2 scenario’s:

1. Restoring of a single RKE2 server (single controlplane)

2. Restoring of multiple HA RKE2 servers (HA controlplane)

Restoring of a single RKE2

• Step 1: Bring down the RKE2 server

▶ sudo systemctl stop rke2-server

• Step 2: Select an etcd snapshot to restoreetcd-snapshot-rpb58-n01-1702245002

▶ sudo rke2 etcd-snapshot ls

Listing 3: Output of rke2 etcd-snapshot ls

Name Location ␣

→˓ Size Created

on-demand-rpb58-n01-1702240686 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓on-demand-rpb58-n01-1702240686 10305568 2023-12-10T20:38:06Z

on-demand-rpb58-n01-1702240858 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓on-demand-rpb58-n01-1702240858 10305568 2023-12-10T20:40:58Z

on-demand-rpb58-n01-1702240917 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓on-demand-rpb58-n01-1702240917 10305568 2023-12-10T20:41:57Z

etcd-snapshot-rpb58-n01-1702243200.zip file:///var/lib/rancher/rke2/server/db/snapshots/

→˓etcd-snapshot-rpb58-n01-1702243200.zip 1276185 2023-12-10T21:20:00Z

etcd-snapshot-rpb58-n01-1702243804 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓etcd-snapshot-rpb58-n01-1702243804 6012960 2023-12-10T21:30:04Z

etcd-snapshot-rpb58-n01-1702244403 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓etcd-snapshot-rpb58-n01-1702244403 6340640 2023-12-10T21:40:03Z

on-demand-rpb58-n01-1702244969 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓on-demand-rpb58-n01-1702244969 6340640 2023-12-10T21:49:29Z

etcd-snapshot-rpb58-n01-1702245002 file:///var/lib/rancher/rke2/server/db/snapshots/

→˓etcd-snapshot-rpb58-n01-1702245002 6340640 2023-12-10T21:50:02Z

Say we wanted to restore the snapshot of dd 2023-12-10T21:50:02Z

▶ sudo rke2 server --cluster-reset \

--cluster-reset-restore-path= \

/var/lib/rancher/rke2/server/db/snapshots/etcd-snapshot-rpb58-n01-

→˓1702245002

This assumes that the snapshot path is the default one. The name of the snapshot file itself can be found in above

listing of the snapshots.

Next step is to start the RKE2 server again with the restored etcd database:

▶ sudo systemctl start rke2-server

Check if the server is up-and-running again:

4.1. Introduction 37

PVD903-RKE2 WORKBOOK, Release 231214

▶ kubectl get nodes

38 Chapter 4. Backing up and restoring RKE2 clusters

5
RKE2 and FIPS/CIS installs

5.1 Introduction

In this lab we are going to practice with installing RKE2 according to the security specifications of FIPS and CIS 1.23. We are

going to assess how much of the CIS 1.23 requirements are covered out of the box after a CIS 1.23 profile install of RKE2 and

how to close the final gaps in addition to mitigating the ones that we cannot close.

5.1.1 Requirements

The requirements for installing hardened RKE2 in this lab are the same as installing RKE2 with single control plane specifi-

cations. For simplicity we will repeat these requirements below.

To be able to execute this lab, you need at least 2 Ubuntu 22.04 (LTS) systems. If you would like to add more rke2-agent

nodes you can always add more machines. The virtual machines must be provided with at least 4 GB Memory, 2 CPUs and

enough storage to store some containers (approximately 8 GB free space should be ok). This lab has been tested on both

x86_64 (AMD64) as wel as aarch64 (ARM64) systems. So they should also work on ARM64 architectures like RPi4, RPi5,

ARM64 ODROIDs, RockPi4, OrangePi4 (plus) etc. RKE2 does not support RISCV64 yet.

Furthermore, you need an Internet connection to be able to access the RKE2 distribution and download some containers from

quay.io and docker.io.

In this lab we assume that there is an unprivileged user, named ‘student01’ available on this system. This user should be able

to execute privileged commands using the sudo utility. Of course your usermay have a different name, important is the access

to sudo su - root privileges.

If not already done, you can create on all nodes this user as root:

$> useradd -m -s /bin/bash student

$> passwd student01

$> echo ”student ALL=(ALL) NOPASSWD: ALL” | tee /etc/sudoers.d/89-student

Login again as the user student, and proceed this lab.

Bring your installation up-to-date, using:

[~ $> sudo apt update

[~ $> sudo apt upgrade -y

If systemd or the kernel is updated during this process, you need to reboot your system. If you are not sure: reboot it anyway.

[~ $> sudo systemctl reboot

Install the following software requirements:

39

PVD903-RKE2 WORKBOOK, Release 231214

[~ $> sudo apt -y install vim info wget curl elinks man-db manpages \

bash-completion psmisc jq ipvsadm yamllint conntrack \

apt-transport-https pinfo

Execute the update of your system and the installation of the software on each node.

5.2 Install RKE2

We will now use a 2 step process to install K8S using the RKE2 distribution on your systems:

1. Install RKE2 server on the system what will fulfill the role of master node for our K8S cluster.

2. Join the other servers that will play the role of (worker-)nodes by installing and configuring rke2-server on these.

In the examples shown here under we will have 3 systems:

Nr Hostname Role Config

1 k8sc903n01 RKE2 server 2cpu, 8GiB RAM

2 k8sc903n02 RKE2 agent #1 2cpu, 8GiB RAM

3 k8sc903n03 RKE2 agent #2 2cpu, 8GiB RAM

5.2.1 Install RKE2 server node

While RKE2 is designed to be hardened by default, it will not pass all Kubernetes CIS controls without modification. To fully

pass the CIS benchmark, we will make a few manual modifications. The first of which will be done on the host operating

system, for RKE2 does not modify this. The second patch of modifications must be made because certain CIS controls for

Network Policies and Pod Security Standards restrict the functionality of our cluster. When we do chose our security over our

freedom, we need to opt into having RKE2 configure these for us, by starting RKE2 with the profile flag set to cis-1.23.

5.2.2 More requirements

In addition to installing RKE2, we also have some host-level requirements when opting for CIS hardening.

5.3 Ensure protect-kernel-defaults are set

When RKE2 is installed via tarball, as is usually the case on OSes that do not use RPMs, such as, in our case, Ubuntu, we use

the following commands to set the kernel default protection flags:

$> sudo cp -f /usr/local/share/rke2/rke2-cis-sysctl.conf /etc/sysctl.d/60-rke2-cis.conf

$> sudo systemctl restart systemd-sysctl

When your OS does use RPMs, such as CentOS on mac, RKE2 is usually installed via RPM, YUM or DNF, and you can use the

following commands to set the kernal default protection flags instead:

$> sudo cp -f /usr/share/rke2/rke2-cis-sysctl.conf /etc/sysctl.d/60-rke2-cis.conf

$> sudo systemctl restart systemd-sysctl

We can verify whether we have set our flags correctly by running

Which should display the flags such as below:

$> vm.panic_on_oom=0

$> vm.overcommit_memory=1

$> kernel.panic=10

$> kernel.panic_on_oops=1

40 Chapter 5. RKE2 and FIPS/CIS installs

PVD903-RKE2 WORKBOOK, Release 231214

To give some additional information about what this exactly does: #. vm.panic_on_oom=0 states that when our virtual ma-

chine runs out of memory, we do not want to panic but instead kill some other processes to free up memory #. vm.overcom-

mit_memory=1 will allow the virtual machine to allocate more memory than is physically available. The kernel will handle

situations where we try to allocate memory that does not exist, hence why this will allow to use our available more efficiently.

#. kernel.panic=10 sets the amount of seconds the kernel will continue running before rebooting after encountering a panic to

10 seconds. This gives the kernel enough time to write and store a log containing the cause of the panic, andmaybe back some

data up, without causing a down-time that is too long for the user’s service. #. kernel.panic_on_oops=1 is a safety measure

that states that, when the kernel encounters an oops (a non-fatal kernel error), it should panic either way and reboot just to

be safe.

5.4 create the etcd user

Finally, we need to create an etcd user and group to achieve our full CIS Benchmark.

For this we run the following command

$> sudo useradd -r -c ”etcd user” -s /sbin/nologin -M etcd -U

5.4.1 Hardening RKE2

In order to properly harden our RKE2 server, we start by creating a server-config.yaml file to store the necessary flag.

But before we do that, we must first create the directory where we need to store this yaml-file, if it does not exist already:

$> sudo mkdir -p /etc/rancher/rke2

$> sudo vi /etc/rancher/rke2/config.yaml

And edit it to contain the following information

profile: cis-1.23

Next, we need to boot our server using the following command, which will run it with our specified flags:

$> sudo systemctl enable rke2-server.service --now

We can verify our server has boot correctly by running

$> sudo journalctl -u rke2-server -lf

Finally, we copy the kube config file and retrieve the node-token to assign nodes to it later:

$> mkdir -p ~/.kube

$> sudo cp /etc/rancher/rke2/rke2.yaml ~/.kube/config

$> sudo chown ${USER}:${USER} ~/.kube/config

$> sudo cat /var/lib/rancher/rke2/server/node-token

Make sure to save the token obtained by running these commands, as we will need it in the next chapter.

5.4. create the etcd user 41

PVD903-RKE2 WORKBOOK, Release 231214

5.4.2 installing and configuring kubectl

On the RKE2 server, install and configure kubectl by running the following code in a file called install-kubectl.sh

#!/bin/sh

ARCH=”$(uname -m)”

case ”$ARCH” in

x86_64)

ARCH=”amd64”

;;

aarch64)

ARCH=”arm64”

;;

esac

curl -LO ”https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/

→˓linux/${ARCH}/kubectl”

sudo mv kubectl /usr/local/bin

sudo chmod +x /usr/local/bin/kubectl

kubectl get nodes

Of course we execute the file by calling the following commands:

$> chmod +x install-kubectl.sh

$> ./install-kubectl.sh

5.4.3 agent-config.yaml

On the RKE2 server, create a file called agent-config.yamlwith the following content. Recall that the node-token is copied

from the last line of the last chapter, Hardening RKE2:

server: https://<rke2-server-hostname>:9345

token: <node-token>

5.4.4 installing a node

On every agent node you want to connect to the master node:

Make a file called rke-agent.sh containing the following code and execute it:

Download and install the RKE2 agent binary

curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_TYPE=”agent” sh -

Copy the agent-config.yaml file from rke2-server to rke2-agent's /etc

sudo mkdir -p /etc/rancher/rke2

sudo cp agent-config.yaml /etc/rancher/rke2/config.yaml

sudo systemctl enable rke2-agent.service --now

Enable and start rke2-agent service to configure RKE2 agent node

sudo systemctl enable rke2-agent.service --now

Optionally verify RKE2 agent logs with:

sudo journalctl -u rke2-agent -lf

42 Chapter 5. RKE2 and FIPS/CIS installs

6
Upgrading RKE2 installations

6.1 Introduction

In this lab we are going to practice with the 2 different methods we can use to upgrade our RKE2 clusters:

1. Manually upgrading the cluster by upgrading/installing a new RKE2 server and agent version.

2. Automatically upgrading our cluster by using the Rancher Upgrade Controller

6.1.1 Requirements

An up-and-running RKE2 cluster with at least one rke2-server node and one rke2-agent node.

6.1.2 Manual upgrade

First we are going to practice with the manual upgrade. This should work on single controlplane (1 rke-servers) as well as

HA controlplane (multiple rke2-server) configuration. In contrast to the automated upgrade method this will also work on

ARM64 based RKE2 clusters.

In our example the IST situation will be an 8 node cluster running version v1.27.8+rke2r1

43

PVD903-RKE2 WORKBOOK, Release 231214

Listing 1: Output of kubectl get nodes prio to upgrade

NAME STATUS ROLES AGE VERSION

k8sc270n01 Ready control-plane,etcd,master 4m6s v1.27.8+rke2r1

k8sc270n02 Ready <none> 2m13s v1.27.8+rke2r1

k8sc270n03 Ready <none> 2m13s v1.27.8+rke2r1

k8sc270n04 Ready <none> 2m12s v1.27.8+rke2r1

k8sc270n05 Ready <none> 2m21s v1.27.8+rke2r1

k8sc270n06 Ready <none> 2m15s v1.27.8+rke2r1

k8sc270n07 Ready <none> 97s v1.27.8+rke2r1

k8sc270n08 Ready <none> 97s v1.27.8+rke2r1

Preparation

1. Backup the cluster

2. Create an ETCD snapshot

▶ sudo rke2 etcd-snapshot save

3. Export kubernetes resources

▶ kubectl get --all-namespaces --export -o yaml > all-deployments.yaml

Mind that this will not export all the api-resources. A K8S backuptool is highly recommended

4. Backup Node Configuration

Save copies of your RKE2 server and agent configuration files.

5. Read the release notes for the new RKE2 release you want to upgrade to, to be aware of any changes that could impact

your cluster or applications.

6. Test in a Staging Environment

If possible, replicate your production environment and perform a test upgrade to identify potential issues.

Upgrade the control-plane(s)

The control-plane nodes (rke2-servers) need to be upgraded one-by-one.

1. Drain the first (or only) rke2-server. Here that’s k8sc270n01:

▶ kubectl drain k8sc270n01 --ignore-daemonsets --delete-local-data

Explanation:

• The kubectl drain <node-name> --ignore-daemonsets --delete-local-data command is

used in Kubernetes to prepare a node formaintenance or upgrade. Here’s what each part of the command

does:

– kubectl drain <node-name> This is the basic command to drain a node in Kubernetes. “Drain-

ing” a node involves safely evicting all the pods running on it, except for those that cannot be moved,

such as static podsmanaged directly by theKubelet. This is done to ensure that the node can be safely

taken down for maintenance or upgrade without disrupting the services running on the cluster.

– --ignore-daemonsets DaemonSets are a type of workload in Kubernetes that ensures that all (or

some) nodes run a copy of a pod. When you drain a node, you usually don’t want to remove these

DaemonSet-managed pods. The –ignore-daemonsets flag tells kubectl drain to ignore pods that are

managed by DaemonSets. Without this flag, the drain command would fail because it cannot evict

these pods as they are automatically recreated on the node.

– --delete-emptydir-data This flag tells the drain command to continue even if there are pods

using emptyDir volumes on the node. The emptyDir volume is a temporary directory that shares a

pod’s lifetime. Using this flagmeans any data in an emptyDir volumewill be deleted when the pod is

evicted. Without this flag, the drain command would fail if such pods were present, as the command

by default does not evict pods with local storage to prevent data loss.

1. Stop the RKE2 Service on the RKE2 server

44 Chapter 6. Upgrading RKE2 installations

PVD903-RKE2 WORKBOOK, Release 231214

▶ sudo systemctl stop rke2-server

2. Download the RKE2 install script for the RKE2 version you want to upgrade to (here v1.28.4+rke2r1)

▶ curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_VERSION=v1.28.4+rke2r1 sh -

3. Start the RKE2 service on this rke2-server node again

▶ sudo systemctl start rke2-server

4. Verify the status of the service to see if rke2-server is running fine

▶ sudo systemctl status rke2-server

5. Use kubectl to check if the node is properly upgraded and in ready state

▶ kubectl get nodes

6. Uncordon the rke2-server node (here k8sc270n01)

▶ kubectl uncordon k8sc270n01

Listing 2: Output of kubectl uncordon

node/k8sc270n01 uncordoned

And check with kubectl get nodes again the status after uncordoning

▶ kubectl get nodes

Listing 3: Output of kubectl get nodes post kubectl uncordon

NAME STATUS ROLES AGE VERSION

k8sc270n01 Ready control-plane,etcd,master 43m v1.28.4+rke2r1

k8sc270n02 Ready <none> 42m v1.27.8+rke2r1

k8sc270n03 Ready <none> 42m v1.27.8+rke2r1

k8sc270n04 Ready <none> 42m v1.27.8+rke2r1

k8sc270n05 Ready <none> 42m v1.27.8+rke2r1

k8sc270n06 Ready <none> 42m v1.27.8+rke2r1

k8sc270n07 Ready <none> 41m v1.27.8+rke2r1

k8sc270n08 Ready <none> 41m v1.27.8+rke2r1

7. Last check, take a look at the K8S engineroom in the kube-system namespace

▶ kubectl get pods -n kube-system

Listing 4: Output of kubectl get pods -n kube-system

NAME READY STATUS RESTARTS ␣

→˓ AGE

cloud-controller-manager-k8sc270n01 1/1 Running 1 (3m34s␣

→˓ago) 3m31s

etcd-k8sc270n01 1/1 Running 0 ␣

→˓ 3m31s

helm-install-rke2-canal-r42kv 0/1 Completed 0 ␣

→˓ 2m59s

helm-install-rke2-coredns-b826c 0/1 Completed 0 ␣

→˓ 2m59s

helm-install-rke2-ingress-nginx-t8l52 0/1 Completed 0 ␣

→˓ 2m59s

helm-install-rke2-metrics-server-wfsrz 0/1 Completed 0 ␣

→˓ 2m59s

helm-install-rke2-snapshot-controller-crd-2mxpb 0/1 Completed 0 ␣

→˓ 2m59s

(continues on next page)

6.1. Introduction 45

PVD903-RKE2 WORKBOOK, Release 231214

(continued from previous page)

helm-install-rke2-snapshot-controller-vslzx 0/1 Completed 0 ␣

→˓ 2m59s

helm-install-rke2-snapshot-validation-webhook-nghrd 0/1 Completed 0 ␣

→˓ 2m59s

kube-apiserver-k8sc270n01 1/1 Running 0 ␣

→˓ 3m31s

kube-controller-manager-k8sc270n01 1/1 Running 1 (3m34s␣

→˓ago) 3m31s

kube-proxy-k8sc270n01 1/1 Running 0 ␣

→˓ 2m53s

kube-proxy-k8sc270n02 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n03 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n04 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n05 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n06 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n07 1/1 Running 0 ␣

→˓ 43m

kube-proxy-k8sc270n08 1/1 Running 0 ␣

→˓ 43m

kube-scheduler-k8sc270n01 1/1 Running 0 ␣

→˓ 3m31s

rke2-canal-4dwkx 2/2 Running 0 ␣

→˓ 43m

rke2-canal-64c6q 2/2 Running 0 ␣

→˓ 43m

rke2-canal-8tfwm 2/2 Running 8 (14m ago) ␣

→˓ 43m

rke2-canal-bmj8q 2/2 Running 2 (7m9s ago)␣

→˓ 43m

rke2-canal-dtmn9 2/2 Running 0 ␣

→˓ 43m

rke2-canal-fmfdp 2/2 Running 9 (9m21s␣

→˓ago) 43m

rke2-canal-hr7w9 2/2 Running 2 (32m ago) ␣

→˓ 45m

rke2-canal-vd7sm 2/2 Running 0 ␣

→˓ 43m

rke2-coredns-rke2-coredns-6b795db654-ct25j 1/1 Running 0 ␣

→˓ 107s

rke2-coredns-rke2-coredns-6b795db654-dvz44 1/1 Running 0 ␣

→˓ 106s

rke2-coredns-rke2-coredns-autoscaler-945fbd459-99hxz 1/1 Running 0 ␣

→˓ 107s

rke2-ingress-nginx-controller-75xff 1/1 Running 0 ␣

→˓ 44m

rke2-ingress-nginx-controller-gd6dc 1/1 Running 0 ␣

→˓ 42m

rke2-ingress-nginx-controller-hmf69 1/1 Running 0 ␣

→˓ 42m

rke2-ingress-nginx-controller-hs6hz 1/1 Running 0 ␣

→˓ 42m

rke2-ingress-nginx-controller-jh55l 1/1 Running 0 ␣

→˓ 42m

rke2-ingress-nginx-controller-n4bgc 1/1 Running 0 ␣

→˓ 42m

rke2-ingress-nginx-controller-pl4zt 1/1 Running 0 ␣

(continues on next page)

46 Chapter 6. Upgrading RKE2 installations

PVD903-RKE2 WORKBOOK, Release 231214

(continued from previous page)

→˓ 41m

rke2-ingress-nginx-controller-pr6gr 1/1 Running 0 ␣

→˓ 42m

rke2-metrics-server-544c8c66fc-jvfl8 1/1 Running 0 ␣

→˓ 2m40s

rke2-snapshot-controller-7d6476d7cb-2klcb 1/1 Running 1 (3m41s␣

→˓ago) 5m56s

rke2-snapshot-validation-webhook-5649fbd66c-w8m4x 1/1 Running 0 ␣

→˓ 5m57s

8. Repeat above steps for every node in your control-plane.

Only when all the control plane nodes have been successfully upgraded continue with upgrading the worker nodes aka

rke2-agents

Upgrade RKE2 agents

Also here the rke2-agent nodes are upgraded one-by-one!

1. Drain the next rke2-agent. Here that’s k8sc270n02:

▶ kubectl drain k8sc270n02 --ignore-daemonsets --delete-local-data

2. Stop the RKE2 Service on this RKE2 agent

▶ sudo systemctl stop rke2-agent

3. Download the RKE2 install script for the RKE2 version you want to upgrade to (here v1.28.4+rke2r1)

▶ curl -sfL https://get.rke2.io | sudo INSTALL_RKE2_TYPE=”agent” INSTALL_RKE2_

→˓VERSION=v1.28.4+rke2r1 sh -

4. Start the RKE2 service on this rke2-agent node again

▶ sudo systemctl start rke2-agent

5. Verify the status of the service to see if rke2-agent is running fine

▶ sudo systemctl status rke2-agent

6. Use kubectl to check if this node is properly upgraded and in ready state

▶ kubectl get nodes

7. Uncordon this rke2-agent node (here k8sc270n02)

▶ kubectl uncordon k8sc270n02

And check with kubectl get nodes again the status after uncordoning

▶ kubectl get nodes

8. Repeat above steps for every node that has the role of worker / rke2-agent

Only when all the rke2-agent nodes have been successfully upgraded the upgrade process is completed.

6.1. Introduction 47

PVD903-RKE2 WORKBOOK, Release 231214

6.1.3 Automatic upgrades

RKE2 let’s you automate the upgrade of your RKE2 cluster using a special upgrade-controller. This operator let’s you plan the

upgrade of both control-plane and worker nodes. The operator is available for ARM64 but the container images needed for

the upgrade on ARM64 platforms are not. So this method is currently only supported on AMD64 platforms.

In order to make use of the upgrade controller one needs to:

1. Install the Rancher upgrade controller.

2. Create upgrade plans for control-plane and worker nodes (CRDs).

3. Flag each nodes when they are ready for upgrade

Install the Rancher upgrade controller

To install the Rancher upgrade controller aka system-upgrade-controller log on to one of your rke2-server

nodes and issue the following command:

▶ kubectl https://github.com/rancher/system-upgrade-controller/releases/download/v0.13.2/

→˓system-upgrade-controller.yaml

This will create the namespace system-upgrade and deploy the system-upgrade-controller in it. Any jobs that will

be deployed by the system-upgrade-controller will appear in this namespace. You can verify the deployment of the

system-upgrade-controller with the following command:

▶ kubectl get pods -n system-upgrade

Create and submit the upgrade plan

The system-upgrade-controller consumes Custom Resources called plans. These plans are just plain YAML describing

how the rke2-server and rke2-agent nodes should be upgraded.

An example:

Listing 5: upgrade-rke2-plan.yaml

Server plan

apiVersion: upgrade.cattle.io/v1

kind: Plan

metadata:

name: server-plan

namespace: system-upgrade

labels:

rke2-upgrade: server

spec:

concurrency: 1

nodeSelector:

matchExpressions:

- {key: rke2-upgrade, operator: Exists}

- {key: rke2-upgrade, operator: NotIn, values: [”disabled”, ”false”]}

When using k8s version 1.19 or older, swap control-plane with master

- {key: node-role.kubernetes.io/control-plane, operator: In, values: [”true”]}

serviceAccountName: system-upgrade

cordon: true

drain:

force: true

upgrade:

image: rancher/rke2-upgrade

version: v1.28.4+rke2r1

Agent plan

apiVersion: upgrade.cattle.io/v1

(continues on next page)

48 Chapter 6. Upgrading RKE2 installations

PVD903-RKE2 WORKBOOK, Release 231214

(continued from previous page)

kind: Plan

metadata:

name: agent-plan

namespace: system-upgrade

labels:

rke2-upgrade: agent

spec:

concurrency: 1

nodeSelector:

matchExpressions:

- {key: rke2-upgrade, operator: Exists}

- {key: rke2-upgrade, operator: NotIn, values: [”disabled”, ”false”]}

When using k8s version 1.19 or older, swap control-plane with master

- {key: node-role.kubernetes.io/control-plane, operator: NotIn, values: [”true”]}

prepare:

args:

- prepare

- server-plan

image: rancher/rke2-upgrade

serviceAccountName: system-upgrade

cordon: true

drain:

force: true

upgrade:

image: rancher/rke2-upgrade

version: v1.28.4+rke2r1

This YAML example contains actually 2 plans.

1. One plan for upgrading the rke2-server nodes

2. One plan for upgrading the rke2-agent nodes

Server Plan

The server-plan is designed to upgrade RKE2 server nodes.

• Concurrency: Specifies the number of nodes to upgrade simultaneously. Set to 1 to upgrade one node at a time.

• NodeSelector: Determines which nodes are targeted for the upgrade. In this plan, nodes with the label rke2-upgrade

and not labeled as disabled or false are selected. Also, nodes labeled as control-plane are targeted.

• ServiceAccountName: The service account used to perform the upgrade.

• Cordon: If set to true, it cordons the node before upgrading, preventing new pods from being scheduled on it.

• Drain: Drains the node of workloads before upgrading. force: true forces eviction of pods.

• Upgrade Image: The Docker image used to perform the upgrade, specified as rancher/rke2-upgrade.

• Version: The target version for the upgrade, v1.28.4+rke2r1 in this case.

Agent Plan

The agent-plan upgrades the RKE2 agent nodes.

• Concurrency: As with the server plan, it’s set to 1.

• NodeSelector: Selects agent nodes for the upgrade, excluding those labeled as control-plane.

• Prepare: Prepares agent nodes by invoking the server-plan. This ensures agents are compatible with server versions.

• Other Parameters: Similar to the server plan, including cordon, drain, upgrade image, and version.

6.1. Introduction 49

PVD903-RKE2 WORKBOOK, Release 231214

Flag the nodes for upgrade

This step is forgotten by a lot of K8S operators. Nothingwill happen unlesswewill flag theNODES to be suitable for upgrading.

This means you need to set a label (according to the above plan: rke2-upgrade=true) on each node we have in our cluster

that needs to be upgraded. In most cases, that means all of the nodes. You can do that manually or use a script like this:

for node in `kubectl get node -o name | awk -F '/' '{print $2}'`

do

kubectl label node ${node} rke2-upgrade=true --overwrite

done

Please note that the upgrade process will not remove the labels, so you must do that manually after the upgrade has been

succesfully completed, to make sure you don’t get instant surprises on the planning of the next upgrade.

Upgrade Process

1. Server Upgrade: The system-upgrade-controller first upgrades server nodes as per the server-plan.

2. Agent Upgrade: After server nodes are upgraded, agent nodes are upgraded following the agent-plan.

Jobs will be created in the system-upgrade namespace for each node that will be upgraded. Nodes that have been upgraded

can be recognized with kubectl get node <nodename> as they will report the newly upgraded version. You can also see

their corresponding job having the completed status when you do a kubectl get pods -n system-upgrade

During and after the upgrade you might see some PODs from upgrade JOBs in ‘Unknown’ state. This should not give cause to

concern. If you do an:

� kubectl get pods -n system-upgrade -o wide

You will see that each job actually runs on the NODE it’s going to upgrade. Hence, once the NODE gets down that JOB will be

drained with the rest of the PODs. A new POD will be deployed after the NODE comes up again to finalize the upgrade tasks.

Precautions and Preparation

• Backup: Ensure you have a complete backup of the cluster.

• Monitoring: Monitor the upgrade process, especially to check for any errors or issues.

• Version Compatibility: Ensure the target version is compatible with your current cluster setup.

• Node Health: Check the health of all nodes before starting the upgrade.

50 Chapter 6. Upgrading RKE2 installations

	Install RKE2 for single CP K8S cluster
	Introduction
	Requirements
	Network Configuration
	Swap

	Install RKE2
	Install RKE2 server node
	Prepare for installing RKE2 agent node(s)
	Installing and adding RKE2 agent nodes to the K8S cluster
	Validating our RKE2 K8S cluster

	Install RKE2 on ARM64 architectures
	Introduction
	Requirements
	Network Configuration
	Swap
	Raspberry Pi OS

	Install RKE2
	Install RKE2 server node
	Prepare for installing RKE2 agent node(s)
	Installing and adding RKE2 agent nodes to the K8S cluster
	Validating our RKE2 K8S cluster

	Installing and configuring add-ons for RKE2
	Introduction
	Requirements
	Boxed in add-ons
	K8S Metrics Server
	Ingress-nginx controller
	Architecture
	Using the Ingress controller
	Deploying the demo-blue microservice
	Deploying the demo-green microservice
	Configuring ingress for both microservices
	Configuring ingress for both microservices

	Custom Add-ons
	Introduction
	OpenEBS
	Cilium CNI

	Backing up and restoring RKE2 clusters
	Introduction
	Requirements
	How it works
	Setting up etcd snapshotting
	Making an ad hoc etcd snapshot
	Listing available etcd snapshots
	Restoring a etcd snapshot
	Restoring of a single RKE2

	RKE2 and FIPS/CIS installs
	Introduction
	Requirements

	Install RKE2
	Install RKE2 server node
	More requirements

	Ensure protect-kernel-defaults are set
	create the etcd user
	Hardening RKE2
	installing and configuring kubectl
	agent-config.yaml
	installing a node

	Upgrading RKE2 installations
	Introduction
	Requirements
	Manual upgrade
	Preparation
	Upgrade the control-plane(s)
	Upgrade RKE2 agents

	Automatic upgrades
	Install the Rancher upgrade controller
	Create and submit the upgrade plan
	Server Plan
	Agent Plan
	Flag the nodes for upgrade
	Upgrade Process
	Precautions and Preparation

